Project Update: Can The “Spirit Molecule” DMT Help Protect Brain Cells?

By Justine Alford

nick chapman/Flickr CC BY-NC 2.0

nick chapman/Flickr CC BY-NC 2.0

What do you associate with elves? Christmas? The Lord Of The Rings? DMT? For the vast majority of people, the latter is doubtful, and you’re probably left a little confused right now. But for those who have experienced the psychedelic effects of the hallucinogenic chemical DMT, the mention of elves may well have just flooded your mind with memories of that drug trip.

DMT, or N,N-Dimethyltryptamine, is a powerfully psychoactive compound that can induce profound experiences, such as the feeling of transcendence and intense visuals. These hallucinations commonly feature humanoid beings or entities sometimes described as elves.

But there’s much more to DMT than otherworldly creatures; some scientists believe it may have a place in modern medicine, and the brains behind a successful crowdfunding campaign launched on Walacea last year has made it his mission to explore this idea further. Six months on from the campaign’s closure, we caught up with this quirky scientist for an exciting update on how the project has progressed so far, and plans for the future.

Those who generously backed the project may be familiar with the science, but we’ll start off with a bit of background for those who aren’t. DMT is produced by many different plant species, some of which are used to make the hallucinogenic drink ayahuasca, used for centuries by Amazonian tribes in shamanic ceremonies. It’s also found naturally in very tiny amounts in humans, known as “endogenous DMT,” and fairly recently it was discovered that the human brain has multiple active transport mechanisms that allow it to cross our protective blood-brain barrier and cellular membranes. Together, these suggest that DMT likely has some role or purpose in the body, other than being a hallucinogen.

11949826476_3110402a35_k

Interestingly, DMT also acts on a cell receptor called sigma-1 which studies have indicated has a protective and restorative function in neurodegenerative diseases and brain ischemia, or the restriction of blood flow to the brain, suggesting it could also play a role in stroke. This, combined with the fact that near-death experiences have been likened to DMT trips, forms the foundations of Dr Ede Frecska and colleague Attila Szabó’s research, who believes that DMT could help protect brain cells from damage caused by a lack of oxygen, or hypoxia, such as during a heart attack, coma, or clinical death.

After successfully smashing his crowdfunding goal of £2,000 last November, raising almost £3,600, Ede Frecska and Attila Szabó have now completed the first phase of their studies, and the results were very promising.

“The experiments went much better than expected,” said Frecska, Chairman of Psychiatry at the University of Debrecen in Hungary. “We’ve done the in vivo experiments, using brain cells in a Petri dish, which is the stage before animals. We stressed these cells with low oxygen concentrations, and found that more survived when exposed to DMT.”

More specifically, Frecska explained that his team exposed human stem cells that had been coaxed into becoming neurons to low levels of oxygen and added varying concentrations of DMT to different dishes. As expected, being starved of oxygen caused the cells to become stressed and die, and adding very low concentrations of DMT didn’t seem to mitigate this. However, higher concentrations of DMT caused three times as many neurons to survive. They also repeated this procedure with a different type of brain cell, called glia, and found similar results.

“The next step is to start using animals,” said Frecska, “so I wish to publish this second DMT paper soon. We have already published work showing that DMT has an anti-inflammatory effect.” That’s also a potentially important find, since chronic inflammation has been linked to a myriad of diseases of civilisation, from Alzheimer’s to heart disease.

If results in such animal models are similarly encouraging, indicating some neuroprotective role of DMT during hypoxia, then Frecska hopes to pursue human trials, possibly investigating its use in individuals whose brains have sustained injury or a lack of blood, and thus oxygen flow. But to progress his work, Frecska needs further funding, which is hard to come by for most scientists, let alone those working on Schedule 1 drugs like DMT.

“Psychedelics are stigmatised,” said Frecska. “You don’t have an endogenous opioid system just so you can have a nice time in an opium cave! And we don’t have endogenous hallucinogens just to make us go crazy.

“But the opioid system has been studied for decades [for its role in pain, stress and immune regulation, etc.]; this didn’t happen after endogenous hallucinogens were discovered. People assume they just have a psychedelic effect. I’m trying to show scientists that this is a new chapter of research, that endogenous hallucinogens have a physiological role in the body.”

Psychedelics are proving themselves not only as promising therapeutics, particularly with regards to mental health, but also as a potential window for investigating fascinating subjects like consciousness – check out the groundbreaking LSD research we also helped crowdfund. It’s time to end the stigma so that more studies like these can be conducted, and so research isn’t hindered by outdated ideas that are rooted in fear rather than science. Thank you for helping towards that goal, and for bringing this study to life!

Leave a Reply

Terms of Agreement

Member usage

Definitions

Crowd.Science’s Service

Crowd.Science has limited liability

How Campaigns Work

Campaign Owner and Campaign Funder Obligation

Campaign Rewards

Fees Payable to Crowd.Science

Stripe Payment Gateway

Refunds

Communications with Crowd.Science

Tax and legal compliance

Dispute Resolution

Governing Law and Jurisdiction

Third Party Site

Prohibited Use Of Crowd.Science

General Overview